Kalkulator gęstości powietrza

Oblicz gęstość powietrza w zależności od temperatury, ciśnienia, wysokości i wilgotności względnej. Uwzględnia model ISA i przelicza jednostki.

  • Bez rejestracji
  • Szybkie działanie
  • Operacje w pamięci
Przewodnik krok po kroku

Zero back-endu, 100% lokalnie.

Kalkulator gęstości powietrza

ρ = p_d/(R_d T) + p_v/(R_v T), gdzie p_v = RH·p_ws(T). p_ws z równania Magnusa-Tetensa. W trybie wysokości p z modelu ISA do 11 km.

Kalkulator gęstości powietrza – ciśnienie, temperatura, wilgotność, wysokość

Ten kalkulator pozwala obliczyć gęstość powietrza w różnych warunkach atmosferycznych. Uwzględnia temperaturę T_in, ciśnienie p_in lub wysokość h_m, a także wilgotność względną RH. W zależności od wybranego trybu mode (pressure lub altitude) możesz wprowadzać dane bezpośrednio lub obliczać z modelu atmosfery standardowej (ISA). Wyniki obejmują ρ w kg/m³, ρ w lb/ft³, ciśnienie w różnych jednostkach, temperaturę w kelwinach oraz względną gęstość σ.

aerodynamika meteorologia fizyka atmosfery ISA powietrze

Parametry wejściowe i działanie kalkulatora

Kalkulator działa w dwóch trybach:

  • Tryb ciśnieniowy (pressure) – użytkownik wprowadza T_in, p_in, RH.
  • Tryb wysokościowy (altitude) – użytkownik wprowadza T_in lub aktywuje use_isa_T, podaje wysokość h_m, a kalkulator oblicza ciśnienie z równania hydrostatycznego.

Dodatkowo można ustawić precyzję wyniku (precision), a wszystkie dane są przeliczane do jednostek SI: temperatura w kelwinach (T_K), ciśnienie w paskalach (p_Pa), gęstość w kg/m³ (rho) oraz w jednostkach imperialnych (rho_lbft3).

Wzory i teoria

1. Równanie stanu gazu doskonałego

ρ = p / (R_d · T_v)

gdzie T_v to temperatura wirtualna, uwzględniająca zawartość pary wodnej:

T_v = T / [1 − (e/p) · (1 − R_d / R_v)]

2. Ciśnienie pary wodnej

Obliczane z równania Tetensa dla temperatury w °C:

e_s = 6.1078 · 10^(7.5 · T / (T + 237.3))

Ciśnienie pary wodnej przy wilgotności RH:

e = RH / 100 · e_s

3. Model atmosfery standardowej (ISA)

p = p0 · (1 − L·h/T0)^(g·M / (R*·L))

gdzie L to gradient temperatury (0.0065 K/m), g – przyspieszenie ziemskie, M – masa molowa powietrza, R* – stała gazowa. Kalkulator używa use_isa_T, aby wyznaczyć temperaturę na wysokości automatycznie.

Jednostki i przeliczenia

Wielkość Jednostki dostępne Domyślna jednostka
Temperatura °C, K °C
Ciśnienie Pa, hPa, kPa, bar, atm hPa
Gęstość kg/m³, lb/ft³ kg/m³
Wysokość m m

Przykłady

Przykład 1 – warunki standardowe

  • T = 15°C
  • p = 1013.25 hPa
  • RH = 0%

ρ = 1.225 kg/m³ (standard atmosferyczny). Wartość ta odpowiada gęstości powietrza używanej w lotnictwie i meteorologii jako odniesienie.

Przykład 2 – 2000 m n.p.m., 10°C, RH = 60%

  • Tryb: altitude
  • h = 2000 m
  • use_isa_T = true

Kalkulator oblicza ciśnienie ≈ 795 hPa, temperaturę ≈ 6°C i gęstość ≈ 1.0 kg/m³. Niższe ciśnienie i większa wilgotność powodują spadek gęstości powietrza, co istotnie wpływa na aerodynamikę.

Zastosowania

  • Lotnictwo – przeliczenia prędkości rzeczywistej (TAS) z prędkości przyrządowej (IAS)
  • Meteorologia – wyznaczanie gęstości dla modeli atmosferycznych
  • Inżynieria HVAC – korekty strumienia powietrza
  • Sporty motorowe – wpływ gęstości powietrza na moc silnika

FAQ

Dlaczego gęstość powietrza maleje z wysokością?

Wraz ze wzrostem wysokości spada ciśnienie atmosferyczne, a więc zmniejsza się liczba cząsteczek w jednostce objętości.

Jak wilgotność wpływa na gęstość?

Para wodna jest lżejsza od suchego powietrza. Im większe RH, tym mniejsza gęstość powietrza.

Czy kalkulator uwzględnia ISA?

Tak, jeśli włączysz use_isa_T, temperatura i ciśnienie zostaną obliczone z równania atmosfery standardowej.

Jak dokładny jest wynik?

Precyzja określana przez precision. Domyślnie 4 miejsca po przecinku, wystarczające do obliczeń technicznych.

Podsumowanie

Kalkulator gęstości powietrza opiera się na równaniu stanu gazu doskonałego, równaniu hydrostatycznym i zależnościach ISA. Pozwala obliczyć gęstość, ciśnienie, temperaturę i inne parametry atmosfery przy dowolnych warunkach. Wyniki są konwertowane do kilku jednostek, co czyni narzędzie uniwersalnym zarówno dla inżynierów, jak i entuzjastów meteorologii.